UNITED STATES OF AMERICA NUCLEAR REGULATORY COMMISSION

BEFORE THE ATOMIC SAFETY AND LICENSING BOARD

In the Matter of)
STP NUCLEAR OPERATING COMPANY)) Docket Nos. 52-012 & 52-013)
(South Texas Project, Units 3 & 4))

REVISED Rebuttal Testimony of

Philip H. Mosenthal

On Behalf of

Intervenors

- 1 (I.) Identification and Qualifications
- 2 Q. Please state your name and business address.
- 3 A. Philip H. Mosenthal, Optimal Energy, Inc., 14 School Street, Bristol, VT 05443.

4

- 5 Q. On whose behalf are you testifying?
- 6 A. I am testifying on behalf of the Sustainable Energy and Economic Development (SEED)
- 7 Coalition, Public Citizen, and South Texas Association for Responsible Energy (Intervenors).

8

- 9 Q. Are you the same Philip H. Mosenthal that submitted direct testimony on behalf of
- 10 the Intervenors on May 9, 2011?
- 11 A. Yes. A summary of my professional qualifications are included in my direct testimony,
- and my resume has been filed previously as Exhibit INT00002.
- 13 (II.) Introduction and Summary of Testimony

- 15 Q. What is the purpose of your rebuttal testimony in this proceeding?
- 16 A. My rebuttal testimony addresses the direct testimonies of NRG Energy Witness Adrian
- 17 Pieniazek (Witness Pieniazek) and NRC Staff Witnesses Daniel C. Mussatti (Witness Mussatti)
- and Michael J. Scott (Witness Scott), filed on May 9, 2011. Specifically, it focuses on the DEIS
- 19 Contention 1-G. All three witnesses mentioned above raise the following points.
- 20 1. Much or all of the building codes & standards electric savings likely to occur in the
- 21 ERCOT territory are already implicitly included in ERCOT's 2010 forecast.
- 22 2. Building codes & standards electric savings represent some portion of double counting of
- efficiency savings because much of this is already embedded in projected savings from
- demand-side management (DSM) programs included in the ERCOT forecast.

1	3.	The analysis by the American Council for an Energy Efficient Economy (ACEEE) in
2		2007 suffers from a number of problems and that actual impacts from codes & standards
3		in Texas will be far lower.

4. Regardless of the impacts from codes & standards, a need still exists for power by 2018 (the latest estimate of the earliest STP3&4 will produce saleable power)¹, and therefore would not change the results of the final environmental impact statement (FEIS).

My rebuttal testimony shows that issues 1, 2 and 4 are not true. In addition, I briefly address issues around the ACEEE study. My direct testimony identified most or all of the same issues raised by Applicant and Staff witnesses about the ACEEE study. Further, in my direct testimony I offered a new, more detailed analysis specific to the current Texas situation. However, I do note that while we agree on the flaws in the ACEEE study, I disagree with the results of adjustments made by Witnesses Pieniazek, Mussatti and Scott and stand by my more detailed analysis of the actual likely impacts from codes and standards in the ERCOT zone, as discussed in my direct testimony.

16 (III.) Issue 1: Does the ERCOT 2010 Forecast Include Savings from Building Codes and Standards?

19 Q. Please explain Issue 1.

A. While statewide adoption of building energy codes in Texas is just now going into effect,
Witness Pieniazek quotes from the FEIS: "However new energy codes have been adopted
continuously by Texas municipalities during the 2000-2010 period ahead of statewide actions in

¹ Witness Pieniazek direct testimony, p. 5.

- 1 2010 and much of their impact would have been included in the ERCOT forecast."² Witness
- 2 Scott also discusses this issue and concludes that the ERCOT forecast reflects savings from
- 3 building codes.³ He goes on to state:

This rapid rate of adoption [municipal adoption of codes] and the resulting savings are implicitly built into the ERCOT econometric forecasting equations. Thus, the ERCOT econometric forecasts already incorporate a proportion of the projected reductions in electric consumption expected when the 2009 building energy codes were adopted in June, 2010. There is no way to easily calculate what this proportion is or predict what the local adoption rate would have been, but it is likely to be significant.⁴

Q. Do you agree with Witnesses Pieniazek and Scott?

A. Partially. I agree with most of the factual statements, including that some proportion of codes savings are likely implicitly embedded in the ERCOT forecast. I disagree, however, with both the FEIS conclusion that "much of their impact would have been included" and Witness Scott that the amount included "is likely to be significant" [emphases added]. As I explain below, the actual level of incorporation of code savings implicit in the ERCOT forecast is extremely small, and likely only a tiny fraction of the ultimate impact over time, and therefore insignificant. The FEIS and Witness Scott are both correct that many municipalities adopted codes prior to the full State adoption of the energy efficient code, and in theory, these impacts would affect the historical data that drive the econometric model somewhat. However, they seem to assume these adoptions have been in place for a long time, and therefore fully reflected in the historical data. On the contrary, most adoptions are relatively recent. Witnesses Scott and Mussatti provide an exhibit to their direct testimony — Attachment 2 — which lists each

² Pieniazek direct testimony p. 15, quoting the FEIS, p. 8-26.

³ Scott direct testimony, p. 30

⁴ Scott direct testimony, p. 32.

1 municipality in Texas that had adopted a code higher that the Texas statewide code prior to the 2 recent enhanced statewide codes. However, they do not indicate the dates these codes went into 3 effect. I have selected the five largest cities in Texas from Attachment 2 and determined the 4 effective dates of code adoption. These are presented below in Table 1 (note population data 5 differs slightly from Attachment 2 and is based on Census data). These 5 cities alone represent 6 all the large population centers on the list, and combined account for roughly 41% of the total 7 population that adopted any codes. 8 As can be seen in Table 1, the only major city in Texas that adopted any that were in effect prior 9 to 2010 was Houston. Because the FEIS relies on the 2010 ERCOT forecast, any adoptions that 10 were not effective at least at the beginning of 2009 (the last year of historic load data) would not 11 have any impact at all on the 2010 ERCOT forecast. Even Houston's code (which was 12 significantly lower than the statewide 2009 IECC and IRC does), was not effective until August 13 2008 for non-residential and January 2009 for residential codes. As a result, virtually none of the 14 impact from Houston's codes would have influenced the forecast. At most, a single year of 15 effectiveness would show up in the historic data. As I explain below, this would be a trivial and 16 likely insignificant impact on the overall ERCOT forecast.

Table 1: Code Adoption dates for the Six Largest Cities in Texas					
City	Population	Commercial	Effective Date	Residential	Effective Date
Houston	1,953,631	ASHRAE 90.1-2004 w/ Houston Amendments	8/1/2008	IECC 2006 w/ Houston Amendments	1/1/2009
Dallas	1,188,580	IECC 2009 w/ Dallas Amendments	4/1/2011	IECC 2009 w/ Dallas Amendments	4/1/2011
San Antonio	1,144,646	IECC 2009 w/ San Antonio Amendments	1/1/2010	IECC 2009 w/ San Antonio Amendments	1/1/2010
Austin	656,562	IECC 2009 w/ Austin Amendments	4/19/2010	IECC 2009 w/ Austin Amendments	4/19/2010
El Paso	563,662	IECC 2009 w/ El Paso Amendments	4/1/2011	IECC 2009 w/ El Paso Amendments	4/1/2011
Fort Worth	534,694	IECC 2009 w/ Fort Worth Amendments	4/1/2011	IECC 2009 w/ Fort Worth Amendments	4/1/2011

Population Data Source: Bureau of the Census, GCT-PH1. Population, Housing Units, Area, and Density: 2000 Data Set: Census 2000 Summary File 1 (SF 1) 100-Percent Data Geographic Area: Texas – Place.

17

18

20

21

22

23

Even when adoptions were done relatively earlier, the level of impact on the forecast would be very small. Witness Scott acknowledges that it is impossible to determine easily what the specific impact is, and I agree. However, there are a number of reasons to believe any

influence on the forecast would be very small. First, codes only impact new construction and major renovation and typically have grace periods of 6 months to a year before one must fully comply. Second, there are significant lags from design to actual completion of larger new buildings and significant impacts are often not seen for at least a year or two after adoption. Finally, the recent historical data that would be most relevant and possibly show impacts from codes are the recession years (2008 and 2009) where new construction activity and load growth virtually disappeared, and the resulting reductions in load from lost economic activity are likely to swamp any statistical impact of these patchwork codes on the overall trends in historic data carrying through to the forecast. Because codes primarily impact new construction, even if a year or two of codes effects were embedded in the historic data, the impacts on the total ERCOT loads would be very small. With new construction representing typically less than 2% of total loads in any given year, the reductions from codes for a year or two are very small. Rather, where code savings are significant is in the long term because each year's small incremental impact accumulates over time due to the long lifetime of new buildings and equipment. Therefore, the total impact by 2020 or 2025 is significant, as shown in my direct testimony Exhibit INT00004. However, the impact in say, 2009 historic data influencing the forecast would be inconsequential at best.

21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

1	
2	S AND AND AND AND AND AND STATE OF THE STATE
3	
4	

6 (IV.) Issue 2: Do Savings from Building Codes and Standards Represent Double

Counting with Efficiency Programs that Were Included in the ERCOT Forecast?

Q. Do you agree with Witnesses Pieniazek and Scott that Savings from Building Codes
 and Standards Represent Double Counting with Efficiency Program Savings?

A. No. Witness Scott correctly points out that some efficiency program participants may in fact choose to far exceed the building code because of the program, and therefore, for that customer perhaps, the code is irrelevant. However, this fundamentally misunderstands how efficiency programs and regulatory policy work in practice. It is virtually universal that ratepayer-funded efficiency programs adopt "baselines" for estimating savings that reflect current codes for new market-driven installations. In other words, except for early retirement of functioning equipment and systems in existing buildings, any new investments in new buildings, equipment and systems are assumed to at least meet code, and then only the incremental savings from exceeding code are counted. As a result, with the adoption of new codes, the baseline for counting savings in Texas efficiency programs is raised, and the programs will only count the additional savings captured beyond code. Because efficiency program goals will still exist based on regulatory and legislative mandates, increasing building code requirements simply has the

⁵ Philip Mosenthal direct testimony, Table 2, p. 13.

⁶ Scott direct testimony, p. 33.

1 result of ramping up efficiency programs to still meet their goals through new savings over and

2 above those mandated by code. Therefore, the future efficiency program savings assumed in the

ERCOT forecast will still need to come from these additional savings.

4

9

10

12

13

14

15

16

17

18

19

3

5 Q. What do you Conclude is Represented by the ERCOT Forecast in Light of Issues 1

6 and 2?

7 A. My conclusion is that the ERCOT Forecast does not include any significant impacts from

8 building codes, The Forecast does include

efficiency program savings, based on current regulatory and legislative rules at the time it was

developed. These are separate and distinct from future savings coming from building codes.

11 I further conclude these are conservative estimates that represent the lower bound of efficiency

program savings likely to occur in Texas. First, the passage of recent legislation will likely result

in ERCOT's forecast estimate of efficiency programs to be underestimated in the future.⁷

Second, Texas programs have often exceeded mandated goals, and some jurisdictions such as

Austin, far exceed them. Finally, the Texas mandates are relatively small compared to many

states, and the trend among leading jurisdictions is now to remove more than 100% of all electric

load growth through efficiency programs, to drive total electric loads downward, not upward. 8 It

is highly likely that these mandates will increase significantly in the future, consistent with

trends throughout virtually all parts of the U.S., to significantly ramp up publicly funded

20 efficiency programs. For example, based on a recent ACEEE presentation electric DSM

.

⁷ For example, SB 1125, SB 898 and HB 51.

⁸ See, for example, planned savings in Massachusetts, Rhode Island and Vermont.

spending in the U.S. and Canada have doubled from 2007 to 2010, from roughly \$3.2 billion to

2 \$6.4 billion.9

3 (V.) Issue 3: What is the Relevance of the 2007 ACEEE Study on the Impacts of

4 Building Codes on Texas Electric Usage?

5

9

11

13

14

16

17

20

6 Q. Please explain the situation regarding ACEEE 2007 Study?

7 A. In 2007 ACEEE published a report showing the potential savings for Texas from

8 hypothetical adoption of statewide building codes (Mussatti and Scott direct testimony, Exhibit

STP000008). This 2007 study was used as evidence by Intervenors by their witness David

10 Powers in his comments on the DEIS that impacts from building codes could be substantial and

were ignored in the DEIS, in violation of the requirement to assess the need for power. The

12 ASLB agreed that the contention (DEIS 1-G) was a legitimate issue to address. However, Mr.

Powers' comments were general in nature and the 2007 ACEEE study was used simply to

illustrate the potential importance of codes savings on the forecast.

Subsequently, my direct testimony was based on a separate analysis of the likely future

impacts from the known building codes as well as Federal Standards in Texas, based on the

current best information and forecast. I believe therefore, that the 2007 ACEEE estimate is no

longer relevant to these proceedings.

I also note that the Applicant and NRC Staff Witnesses identified numerous problems

with the presumed reliance on the ACEEE Study in these proceedings. For the most part I agree

21 with them. For example, they noted that:

-

⁹ ACEEE, Nadel Keynote Address, Slide 2, http://aceee.org/files/pdf/conferences/mt/2011/Introduction%20-%20Steve%20Nadel.pdf

- The study is now 4 years old, and relied on a forecast that is no longer relevant.
- The study addressed the full state of Texas, and not just the ERCOT load zone.
- The study assumed 100% compliance with all codes.
- The study simply assumed a placeholder 15% improvement over current practices initially, and then a jump to 30% at 2020, rather than using factors that reflect the actual codes adopted and the mandated cycles for code upgrades.

The analysis presented in my direct testimony properly deals with all these issues, and represents the current best estimate of impacts from codes. I also note that these reflect savings in addition to future efficiency programs, and not a double counting of the same savings. Finally, I note that my estimate is likely significantly low because I only estimated savings from new construction, which typically represents only a percent or two of the total electric load in any given year. The new statewide standards apply to major renovations as well as new construction. Assuming a typical renovation cycle of around once every 25 years for many buildings, this would imply fully 4% of existing building energy consumption would turnover and become applicable to the codes each year. This represents potentially 2-3 times more savings than I have modeled in my analysis. As a result, my estimates of 1,404 and 2,419 MW savings in 2020 and 2025, respectively, could in fact rise to more like 2,800-4,200 MW in 2020 and 4,800-7,200 MW in 2025.

- 21 Q. Do you agree with the Adjustments made by Witnesses Pieniazek, Mussatti and
- 22 Scott to the ACEEE Study?
- 23 A. No. These witnesses have attempted to make downward adjustments to the ACEEE
- 24 study, rather than redo the study with all correct assumptions. Their approach results in

1 erroneously low figures. Perhaps the largest flaw in their method is that they ignore the very 2 significant likely future upgrades to codes every 3 years, however it is by no means the only problem with their approach. Regardless, I decline to go into a detailed critique of these 3 adjustments because the 2007 ACEEE Study should not be the basis for estimating impacts given 4 5 my new analysis. Issue 4: Would Incorporating the Savings from Building Codes and Standards in 6 7 the EIS Analysis Affect the Conclusions on the Need for Power? 8 9 Q. Witness Pieniazek claims that even if the ERCOT forecast were adjusted for the building codes savings there would still be a need for power. 10 Do you agree? 10 No. This is far from certain at this point. As my analysis in my direct testimony shows 11 A. (Table 2, p. 13), without coal plant retirements there is no need for power until 2020, and at that 12 point the need is only 230 MW (less than 10% of the planned output of STP 3&4), after 13 14 accounting for building codes and standards savings. 15 16 note that this is even without considering the likely significant impacts from building codes 17 coming from renovation of existing buildings, which could be far higher than the 1,404 MW I 18 19 estimate from codes by 2020. As a result, it is entirely possible that no need will exist even in 2025 or beyond. In addition, as noted above, some states have now driven "load growth 20 21 negative," and as climate change becomes a greater political issue this is highly likely in Texas

¹⁰ Pieniazek direct testimony, p. 4.

as well. Therefore, it is quite possible there will be no need for new power for the foreseeable future. Given that no one can predict the future with certainty, and the long lead time

- Q.
- necessary to bring a nuclear plant online, what do you recommend the NRC do?
- I recommend the NRC reject the FEIS as insufficient because it does not adequately show A.
- a definite need for power, and has failed to consider existing and known laws and regulations

relating to already passed building codes and standards, while at the same time relying on speculative arguments about environmental regulations that have not passed and that have significant political and industry opposition. While I acknowledge that nuclear plants take a long time to build, the risks of delay caused by a rejection of the DEIS/FEIS are not great and the lights won't go out. Delays caused by a rejection of the DEIS/FEIS will allow tremendous benefits, most of which bear on the need for power from STP 3&4, to Texas and its ratepayers, even if in the end the plant is built. The benefits include: allowing for better understanding of the current trends toward dramatic increases in investment in efficiency throughout the U.S., as well as general climate change policies, and the likely future resources provided by efficiency in Texas; and

1	
2	
3	
4	Control of the Contro
5	
6	12
7	
8	All these things taken together can dramatically clarify the likely future needs for new
9	power, if any, and inform policymakers so that the best decisions can be made. Even a 2 year

delay in approval could provide much better knowledge and theoretically still allow STP 3&4 to

go online in 2020, the first year of a need for power under my conservative analysis.

12

13

11

- Q. Does this conclude your testimony?
- 14 A. Yes.

¹¹ Ehrhardt-Martinez, Donnelly & Laitner, Advance Metering Initiatives and Residential Feedback Programs: A Meta-Review for Household Electricity-Saving Opportunities, June 2010, http://aceee.org/files/pdf/SKP-KEM-Energy-Feedback-Perspectives-Sep-14-2010.pdf.

¹² See, for example, Wikipedia: http://en.wikipedia.org/wiki/Grid_parity. Among other references, Wikipedia cites General Electric's Chief Engineer's prediction that grid parity in sunny parts of the U.S. will occur around 2015. It notes "other companies predict an earlier date."

Affidavit of Philip H. Mosenthal

I, Philip H. Mosenthal, affirm that the attached Direct Testimony of Philip H. Mosenthal, dated May 9, 2011, on behalf of Intervenors submitted to the United States Nuclear Regulatory Commission before the Atomic Safety and Licensing Board re: In the Matter of STP Nuclear Operating Company (South Texas Project, Units 3 & 4), in Docket Nos. 52-012 & 52-013, is true and correct to the best of my knowledge. The subject testimony and supporting analyses were developed by me or under my direction.

Philip H. Mosenthal

Data

Notarized by:

April Clodgo

Date

Notary Expires:

